Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2483, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509065

RESUMO

Missense variants are the most common type of coding genetic variants. Their functional assessment is fundamental for defining any implication in human diseases and may also uncover genes that are essential for human organ development. Here, we apply CRISPR-Cas9 gene editing on human iPSCs to study a heterozygous missense variant in GLI2 identified in two siblings with early-onset and insulin-dependent diabetes of unknown cause. GLI2 is a primary mediator of the Hedgehog pathway, which regulates pancreatic ß-cell development in mice. However, neither mutations in GLI2 nor Hedgehog dysregulation have been reported as cause or predisposition to diabetes. We establish and study a set of isogenic iPSC lines harbouring the missense variant for their ability to differentiate into pancreatic ß-like cells. Interestingly, iPSCs carrying the missense variant show altered GLI2 transcriptional activity and impaired differentiation of pancreatic progenitors into endocrine cells. RNASeq and network analyses unveil a crosstalk between Hedgehog and WNT pathways, with the dysregulation of non-canonical WNT signaling in pancreatic progenitors carrying the GLI2 missense variant. Collectively, our findings underscore an essential role for GLI2 in human endocrine development and identify a gene variant that may lead to diabetes.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Mutação de Sentido Incorreto/genética , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo
2.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32847986

RESUMO

INTRODUCTION: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated mortality globally. Immune-checkpoint blockade (ICB) is one of the systemic therapy options for HCC. However, response rates remain low, necessitating robust predictive biomarkers. In the present study, we examined the expression of CD38, a molecule involved in the immunosuppressive adenosinergic pathway, on immune cells present in the tumor microenvironment. We then investigated the association between CD38 and ICB treatment outcomes in advanced HCC. METHODS: Clinically annotated samples from 49 patients with advanced HCC treated with ICB were analyzed for CD38 expression using immunohistochemistry (IHC), multiplex immunohistochemistry/immunofluorescence (mIHC/IF) and multiplex cytokine analysis. RESULTS: IHC and mIHC/IF analyses revealed that higher intratumoral CD38+ cell proportion was strongly associated with improved response to ICB. The overall response rates to ICB was significantly higher among patients with high proportion of total CD38+cells compared with patients with low proportion (43.5% vs 3.9%, p=0.019). Higher responses seen among patients with a high intratumoral CD38+cell proportion translated to a longer median progression-free survival (mPFS, 8.21 months vs 1.64 months, p=0.0065) and median overall survival (mOS, 19.06 months vs 9.59 months, p=0.0295). Patients with high CD38+CD68+macrophage density had a better mOS of 34.43 months compared with 9.66 months in patients with low CD38+CD68+ macrophage density. CD38hi macrophages produce more interferon γ (IFN-γ) and related cytokines, which may explain its predictive value when treated with ICB. CONCLUSIONS: A high proportion of CD38+ cells, determined by IHC, predicts response to ICB and is associated with superior mPFS and OS in advanced HCC.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Antígeno B7-H1/imunologia , Carcinoma Hepatocelular/imunologia , Imuno-Histoquímica/métodos , Imunoterapia/métodos , Neoplasias Hepáticas/imunologia , Microambiente Tumoral/imunologia , Idoso , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino
3.
Cells ; 9(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861847

RESUMO

The tumor microenvironment (TME) consists of extracellular matrix proteins, immune cells, vascular cells, lymphatics and fibroblasts. Under normal physiological conditions, tissue homeostasis protects against tumor development. However, under pathological conditions, interplay between the tumor and its microenvironment can promote tumor initiation, growth and metastasis. Immune cells within the TME have an important role in the formation, growth and metastasis of tumors, and in the responsiveness of these tumors to immunotherapy. Recent breakthroughs in the field of cancer immunotherapy have further highlighted the potential of targeting TME elements, including these immune cells, to improve the efficacy of cancer prognostics and immunotherapy. CD38 and CD157 are glycoproteins that contribute to the tumorigenic properties of the TME. For example, in the hypoxic TME, the enzymatic functions of CD38 result in an immunosuppressive environment. This leads to increased immune resistance in tumor cells and allows faster growth and proliferation rates. CD157 may also aid the production of an immunosuppressive TME, and confers increased malignancy to tumor cells through the promotion of tumor invasion and metastasis. An improved understanding of CD38 and CD157 in the TME, and how these glycoproteins affect cancer progression, will be useful to develop both cancer prognosis and treatment methods. This review aims to discuss the roles of CD38 and CD157 in the TME and cancer immunotherapy of a range of solid tumor types.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias/imunologia , Hipóxia Celular , Progressão da Doença , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...